Proposal
Statistics Seminar

Statistical Design and Analysis of Analytical Performance Evaluation
Experiments according CLSI

Contents

1 Introduction .. 2
 1.1 Presentation of ACOMED statistik .. 2
 1.2 Statistics Seminars ... 2

2 What you can expect from the seminar ... 2
 2.1 Specific characteristics .. 2
 2.2 Participants .. 2
 2.3 Aim of the seminar .. 2
 2.4 Example data ... 3
 2.5 Practical aspects ... 3
 2.6 Software ... 3
 2.7 Software training (Analyse-It™) .. 3

3 Contents of the seminar ... 4
 3.1 Basic statistics ... 4
 3.2 Advanced statistics .. 4
 3.3 Statistics of method validation experiments .. 4
 3.3.1 Method comparison acc. CLSI EP09 .. 4
 3.3.2 Analytical performance of qualitative methods (focus method comparison) 4
 3.3.3 Precision acc. CLSI EP05 .. 4
 3.3.4 Detection Capability acc. CLSI EP17 .. 5
 3.3.5 Reference intervals acc. CLSI EP28 ... 5
 3.3.6 Linearity acc. CLSI EP06 ... 5
 3.3.7 Carry over .. 5
 3.3.8 Stability acc. EP25 .. 5
 3.3.9 Commutability acc. EP14 and EP30 .. 5
 3.3.10 Other topics .. 5

4 Publications related to this topic ... 6

5 References (statistical design and analysis) ... 7
 5.1 Universities and public research organizations .. 7
 5.2 IVD-companies .. 7

6 References (statistical training) ... 7
1 Introduction

1.1 Presentation of ACOMED statistik

ACOMED statistik, Leipzig, is a company founded by Dr. Thomas Keller in 2003. It offers services in the field of statistical planning and evaluation of experiments in life sciences and clinical studies. Customers include companies in the pharmaceutical and diagnostics industry as well as research groups from universities and other public research institutes throughout Europe (focus on Germany and Switzerland) and US.

Statistical services within the design and evaluation of method validations as well as diagnostic clinical studies are a main focus.

Dr. Thomas Keller (ACOMED statistik, Leipzig) can refer to excellent references. Please refer to the list of references and publications.

The diverse experience gained in interdisciplinary cooperation with physicians and scientists from the life sciences is incorporated into the statistics seminars offered by Dr. Keller.

1.2 Statistics Seminars

The statistics seminars are aimed at physicians and scientists in the field of life sciences. As a rule, the seminars are offered as in-house seminars. Dr. Keller also participates in seminar series (BB-Life Berlin-Brandenburg, FORUM-Institut Heidelberg, ProCell-Academy Heidelberg, Biosaxony). Dr. Keller is a physicist by profession (focus on biophysics) and before founding ACOMED statistik he worked as scientific assistant at Leipzig University and as the head of research and development in a biotech company, where he was significantly involved in the development of a point-of-care device. Therefore, Dr. Keller can refer to practical experience in laboratory work such as measuring, pipetting etc. and the corresponding quality assurance.

2 What you can expect from the seminar

2.1 Specific characteristics

The following characteristics distinguish the seminars:

- "Statistics without formulas." Of course, formulas are also presented, but the seminars are designed in such a way that the basic understanding of statistical facts should be awakened.
- "Statistics - not a foreign language". The experience of multi-professional teams from laboratories and clinics means that statistical data is communicated in the language of the user. Statistical terms are of course presented, but only used to the extent necessary.
- "Data of the audience as examples". It has proven itself to ask questions, application examples and data sets of customers and listeners in advance and to use them as examples in the seminars. This increases the target-orientation of the seminar contents, the motivation of the listeners and the learning effect.
- Small MS-Excel™-tools developed by ACOMED statistik are used within the seminar by the participants to perform simple calculations.

2.2 Participants

The seminar is aimed at scientists and laboratory staff from IVD companies and clinical laboratories. The audience includes those responsible for quality assurance and regulatory affairs, too. The seminar is also suitable for statisticians who want to familiarize themselves with the specifics of statistical analyses of method validation experiments.

2.3 Aim of the seminar

The aim of the seminar is to enable the participants to evaluate and classify the results of method validation experiments from a statistical point of view. They know the necessary statistical concepts and methods which are necessary for the design and analysis of method validation experiments. After the seminar, they will be able to set up corresponding experimental protocols.

In terms of analyses, the participants have the basis to familiarise with the practical aspects themselves, however, for this purpose additional effort, daily practice etc. are necessary.
2.4 Example data
A broad spectrum of data from method validation experiments is available. However, we prefer to use sample data sets provided by the customer in advance during the seminar.

2.5 Practical aspects
It has proven itself to split full-day seminars over two half days (afternoon + following morning). As a rule, there are no additional costs.
Typically 3 – 16 participants are expected.
It is preferred if the scripts are printed by the customer.
Certificates are issued.
The seminars can be presented in German (preferred) or in English¹.

2.6 Software
The seminars can be combined with software training courses (Excel, Analyse-It, R etc.). As a rule, the customer is responsible for providing the hardware and software.

2.7 Software training (Analyse-It™)
In terms of analysis of analytical performance studies and method validation experiments, Dr. Keller provides software trainings for software Analyse-It™.
These software trainings contain statistical and methodological background as listed in chapter 3.3 as well.
Dr. Keller is mentioned as an official partner of the website of Analyse-It™. It would be possible to use temporary licenses within the seminar.

¹ (please note somewhat limited skills in English language)
3 Contents of the seminar

3.1 Basic statistics
Statistical description of data (mean, median, standard deviation, graphical representation) parametric vs non-parametric approaches
Statistical estimation, standard error, confidence interval
Statistical proof (testing) by confidence intervals (test of a difference vs. test of equivalence or non-inferiority

3.2 Advanced statistics
Regression methods (for method comparison, linearity, stability)
ANOVA, especially random effects ANOVA for estimation of variance components (for evaluation of precision and specific compounds (intra- and inter-factor precision)

3.3 Statistics of method validation experiments
Typically, 3 of the following method validation experiments can be presented at 1 day.
Please chose according your interests.

3.3.1 Method comparison acc. CLSI EP09
Introduction in bias, trueness and other terms
Method comparison – application of difference plots
Method comparison – application of regression methods
Proof of equivalence as a typical aim of method comparison experiments and its statistical implementation (equivalence testing).
Setup of experiments, sample size
Analysis of data, examples
Software solution (Analyse-It™, Medcalc™, MS Excel™-tools)

Note: Dr. Keller was a member of the CLSI subcommittee for development of version A3 of EP09 guideline.

3.3.2 Analytical performance of qualitative methods (focus method comparison)
Statistics of categorically (binary) scaled data
Method comparison: Agreement, consistency, kappa-statistics, respective confidence intervals
Precision for qualitative measurants
Diagnostic performance measures (sensitivity, specificity, predictive values, diagnostic likelihood ratios)
Software solutions (Analyse-It™, ACOMED statistic tools)

3.3.3 Precision acc. CLSI EP05
Introduction in precision, repeatability, reproducibility
Setup of the multilevel experiment, sample size
Application of random effects ANOVA to estimate variance components (√ to calculate repeatability, other precision components and reproducibility from 1 experiment)
Analysis of data, examples
Software solution (Analyse-It™, MS Excel™-tools, VFP, R)
3.3.4 **Detection Capability acc. CLSI EP17**

Introduction into terms (Limit of Blanks, Limit of Detection, Limit of Quantitation)
Statistical background (parametric vs non parametric description of data)
Analysis of data, examples
Software solutions (Analyse-It™)

3.3.5 **Reference intervals acc. CLSI EP28**

Statistical background (parametric vs non parametric description of data)
Experimental requirements and setup, sample size
Uncertainty of reference limits
Analysis of data, examples
Software solution (Analyse-It™)

3.3.6 **Linearity acc. CLSI EP06**

Statistical background (linear and polynomial regression)
Analysis of data, examples
Software solution (Analyse-It™, MS Excel™)

3.3.7 **Carry over**

Carry over as a non inferiority problem
Analysis of data
Software solution

3.3.8 **Stability acc. EP25**

Evaluation of stability as a statistical equivalence problem
Application of a regression approach
Software solution

Note: Dr. Keller was a member of the CLSI subcommittee for development of version A3 of EP25 guideline.

3.3.9 **Commutability acc. EP14 and EP30**

Evaluation of commutability as a statistical equivalence problem
Statistical approaches

Note: Dr. Keller is a member of the IFCC working groups for development of respective recommendations

3.3.10 **Other topics**

If you would like training on other topics, we would be happy to check whether we can also offer seminars on this subject.
4 Publications related to this topic

Häckel R, Gurr E, Keller T (2016): Permissible measurement uncertainty in the lower part of measurement intervals, J Lab Med 40, 271-77

5 References (statistical design and analysis)

If not other stated, Germany is the location.

5.1 Universities and public research organizations
Charité Berlin, Pediatric Oncology, Urologa
CLSI Subcommittees EP9 and EP25, Utah, USA
Fraunhofer Institute for Celltherapy and Immunology, Leipzig
IRMM (Institute for reference materials, Gent, Belgium)
University of Leipzig, Immunology
University of Düsseldorf, Pediatric Oncology
University of Dresden, Clinical lab (gynaecology)
University of Erlangen, Clinical lab (pediatrics),
University of Essen, Clinical Lab (gynaecology)
University of Gent (Belgium), Clinical lab

5.2 IVD-companies
AdnaGen AG, Hannover
Bayer Diagnostics GmbH, Fernwald (now Siemens AG)
Beckmann Coulter GmbH (Krefeld, and Nyon/Schweiz)
Brahms GmbH, Berlin-Henningsdorf
Dentognostics GmbH
GiLUPI GmbH, Potsdam
Greiner Bio-One GmbH (Frickenhausen, sowie Rainbach/Österreich)
Lophius Biosciences GmbH, Regensburg
LifeCodexx AG, Konstanz
LS Labor AG, Bad Bocklet (Laboratory for pharmaceutical industry)
MTM laboratories AG (now Roche Diagnostics)
R-Biopharm AG, Darmstadt
Sysmex Europe GmbH, Norderstedt
And others

6 References (statistical training)
Beckmann Coulter GmbH, Krefeld and Nyon/Schweiz
BB Life, Berlin
Biosaxony academy, Dresden/Leipzig
Boehringer Ingelheim Pharma Gmbh & Co. KG (Biomarker-Unit), Ingelheim
FORUM-Institut, Heidelberg
Fachhochschule Kärnten, Klagenfurt, Austria
Fraunhofer Institute for Celltherapy and Immunology, Leipzig
Lonza Cologne GmbH, Cologne
IBBL (Integrated BioBank of Luxembourg)
mibe Arzneimittel GmbH, Brehna
ProGen Biotechnik GmbH, Heidelberg
R-Biopharm AG, Darmstadt
Sysmex Europe GmbH, Norderstedt
TRM Leipzig
TU München
Vet Med Labor GmbH, Ludwigsburg
and others