

Analyse-it: Development & Validation process Page 1

Development & Validation Process

Analyse-it for Microsoft Excel

This document describes the development and testing process used by Analyse-it Software, Ltd. in creating
Analyse-it for Microsoft Excel version 3.00 and later.

1st Feburary 2023

About Analyse-it

Analyse-it for Microsoft Excel is developed by Analyse-it Software Ltd. It is an add-in for Microsoft Excel that implements
statistical procedures and is designed to run on Microsoft Excel 2007, 2010, 2013, 2016, 2019 and 365, on Microsoft
Windows operating systems Windows 7, 8, 10, 11, and Windows Server 2003, 2008, 2012, 2016, 2019 & 2022.

For the last 25 years Analyse-it has been the leader in statistical analysis software for Microsoft Excel. It is used by over
60,000 users, is highly respected in the scientific and research community, and is cited in thousands of peer reviewed
publications.

https://analyse-it.com/

Using Analyse-it for Microsoft Excel in FDA regulated environments

For purposes of U.S. Food and Drug Administration (FDA) validation, Analyse-it for Microsoft Excel should be considered
off-the-shelf software.

For that reason Analyse-it is not directly responsible for compliance with FDA regulations. Responsibility for compliance
lies with the user. To that end, you should read this document to assess the adequacy of our software development
process and determine what, if any, additional efforts you need to take to establish that the software is validated for the
intended use.

For FDA advice on software validation, see:

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation

Analyse-it: Development & Validation process Page 2

The Development Process

The development process involves Analyse-it and end-users.

Software Development Tools

Languages C#, with some numerical libraries in C++ and FORTRAN

Development environment Microsoft Visual Studio 2017 / 2019

Configuration & source code management GIT

Requirements, issue, & defect management Microsoft DevOps

Test case management & test runs Internal

User Interface prototyping Balsamiq Mockups

Unit testing JetBrains ReSharper / NUnit

Code coverage JetBrains dotCover

Performance & memory-use JetBrains dotTrace

Help documentation DITA OT

Software installers MSI Factory

Software Development Lifecycle

Revisions to the software are scheduled for release on a 9-12-month cycle, or less depending on circumstances and
market demands, with minor maintenance releases as necessary:

 Major releases incorporate new statistical procedures and/or features.

 Maintenance releases contain fixes to issues reported by end-users and minor feature enhancements.

Requirements and Design

Requirements are gathered through several channels:

 Customer feedback

 Technical support enquires

 Development discussion and recommendations

 Partner requests

Requirements are tracked using the issue management system in the form of user-stories, each documenting what the
user wants to achieve. User interface mockups are developed using the user interface prototyping tool to explore possible
implementation.

All requirements are prioritized, among other development tasks, to produce a backlog from which future development
can proceed.

Release planning

When preparing for a new release, the most desirable requirements from the backlog are chosen and added into a release
backlog. The release backlog is prioritized to ensure the most important requirements, or those with high-risk in terms of
development time or complexity, are addressed first.

A specification document is then produced outlining the features for implementation. Implementation is broken into a
series of short sprints (stages) with target dates and milestones. Milestones and target dates are not fixed and are
regularly reviewed and adjusted during development to ensure code stability, code quality, & testing coverage, remain
high and to adjust for delays such as requirements needing clarification.

Analyse-it: Development & Validation process Page 3

Coding

Each coding sprint starts by choosing requirements from the release backlog to be coded in the sprint. Coding then
proceeds to implement the planned requirements and changes.

During coding:

 All code changes are recorded in the source code management system, with notes where necessary, to provide
an audit trail of all changes.

 Automated and manual ad-hoc testing begins, with test cases created and recorded in the test case management
system.

 Bugs are recorded in the defect tracking system and fixed immediately when possible to ensure code quality and
stability remains high.

 Developers discuss and explain their design and coding choices, and solicit feedback from other developers in the
team through code reviews.

 Performance & memory-use analysis tools are used to ensure the implementation is efficient.

When implementation of new features and significant changes are complete, though not fully tested, the requirements
for the current release are frozen. Coding sprints now focus on rigorous testing and fixing bugs until the software is stable.
At this time approval is needed for further changes, with all code changes reviewed to ensure they address the intended
issue only and do not introduce additional errors.

Testing

Throughout development, unit, integration, and system tests are developed to ensure the software is of the highest
quality, stability, and is numerically correct. Testing is manual and ad hoc in early development. Automatic tests are
developed as the code becomes more stable, and are used whenever possible so they can be automatically re-run to
regression test changes and releases.

During testing:

 All test cases, automatic and manual, are documented.

 All code changes are recorded in the source code management system, with notes where necessary, to provide
an audit trail of all changes.

 Bugs and their fixes are recorded in the defect tracking system.

In total we maintain a collection of more than 1,000 proprietary test cases for Analyse-it. Almost all tests are multi-
faceted, exercising many inputs and testing many outputs.

Exhaustive testing is not possible for anything but the most trivial of software, so testing resources must be concentrated
on the most high-risk areas. All statistical functions are tested against other software including JMP, Mathematica, against
in-house developed Excel spreadsheets, and against public validation suites including the NIST StRD
(http://www.itl.nist.gov/div898/strd/). Testing ensures the numerical accuracy and correctness of the algorithm
implementation. Code reviews are used to identify edge cases and special conditions that need to be tested, and code
coverage is measured at the branch/decision level to ensure all-paths through the algorithms are tested.

http://www.itl.nist.gov/div898/strd/

Analyse-it: Development & Validation process Page 4

Despite our extensive testing efforts, it should be noted that testing can never guarantee that software contains no bugs.
To quote the FDA:

“Software testing has limitations that must be recognized and considered when planning the testing of a particular
software product. Except for the simplest of programs, software cannot be exhaustively tested. Generally it is not feasible
to test a software product with all possible inputs, nor is it possible to test all possible data processing paths that can occur
during program execution. There is no one type of testing or testing methodology that can ensure a particular software
product has been thoroughly tested. Testing of all program functionality does not mean all of the program has been tested.
Testing of all of a program's code does not mean all necessary functionality is present in the program. Testing of all
program functionality and all program code does not mean the program is 100% correct! Software testing that finds no
errors should not be interpreted to mean that errors do not exist in the software product.”

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation

User Site Testing

Development relies on end-user data and feedback to perform system testing in specific and unique customer
environments.

At the end of coding sprints that include significant new features or changes, interim releases are sent to domain experts.
Feedback is solicited to identify problems in installation, usability, feature implementation, and to determine whether
requirements have been met. Selected end-users are invited into this process as the software nears completion.

During these phases, all feedback and bug reports are recorded in the issue and defect tracking system where they can be
evaluated, prioritized, and either scheduled to be addressed in the remaining sprints of the release or deferred to a future
release. Automated bug-reporting ensures technical information on bugs/crashes at user sites is collected and relayed
directly to the development team to assist diagnosing and fixing any issues that arise.

Release

When development and testing are complete, a production release candidate is provided to select end users. A test-run
covering the highest-risk tests is run on the release candidate across different variations of Excel and operating systems.
The software is then ready for public release.

Maintenance Releases

After a major release, bugs and issues that arise are collected through customer support and a proprietary bug reporting
and feedback feature of the software. All feedback and bug reports are recorded in the issue and defect tracking system
where they can be evaluated and prioritized.

When high priority issues arise, that need attention before the next major release, a coding sprint to fix the issue is
scheduled. During this sprint all changes to the code are recorded and documented in the source configuration
management, and fixes are documented in the defect tracking systems. The fixes are then scheduled for inclusion in the
next maintenance release.

Maintenance releases occur as needed. Before a maintenance release, code changes in the maintenance release are
reviewed, fixes are tested before inclusion in the maintenance branch, automated tests are updated appropriately, and
then tests are re-run to regression test the maintenance release. The documentation team is notified of any changes
affecting the documentation.

