Important: It looks like you are browsing from a non-Windows device. Please be aware that Analyse-it is only available for Microsoft Windows.
Training and consultancy for Analyse-it Read the blog post

# Estimators for the difference in means/medians (2 independent samples)

Estimators for the difference in means/medians of independent samples and their properties and assumptions.

Estimator | Purpose |
---|---|

Mean difference | Estimate the difference between the means. |

Standardized mean difference | Estimate the standardized difference between the means. Cohen's d is the most popular estimator using the difference between the means divided by the pooled sample standard deviation. Cohen's d is a biased estimator of the population standardized mean difference (although the bias is very small and disappears for moderate to large samples) whereas Hedge's g applies an unbiasing constant to correct for the bias. |

Hodges-Lehmann location shift | Estimate the shift in location. A shift in location is equivalent to a difference between means/medians when the distributions are identically shaped. |

**Available in Analyse-it Editions**

Standard edition

Method Validation edition

Quality Control & Improvement edition

Ultimate edition

- What is Analyse-it?
- Administrator's Guide
- User's Guide
- Statistical Reference Guide
- Distribution
- Compare groups
- Calculating univariate descriptive statistics, by group
- Side-by-side univariate plots
- Creating side-by-side univariate plots
- Equality of means/medians hypothesis test
- Tests for equality of means/medians
- Testing equality of means/medians
- Difference between means/medians effect size
- Estimators for the difference in means/medians
- Estimating the difference between means/medians
- Multiple comparisons
- Mean-Mean scatter plot
- Multiple comparison procedures
- Comparing multiple means/medians
- Homogeneity of variance hypothesis test
- Tests for homogeneity of variance
- Testing homogeneity of variance
- Study design
- Compare pairs
- Contingency tables
- Correlation and association
- Principal component analysis (PCA)
- Factor analysis (FA)
- Item reliability
- Fit model
- Method comparison
- Measurement systems analysis (MSA)
- Reference interval
- Diagnostic performance
- Control charts
- Process capability
- Pareto analysis
- Study Designs
- Bibliography

Version 5.30

Published 15-Apr-2019